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Abstract

This thesis describes a system for dealing with free surface fluid simulations,
and the components needed in order to construct such a system. It builds upon
recent research, but in a computer graphics context the amount of available
literature is limited and difficult to implement. Because of this, the text aims
at providing a solid foundation of the mathematics needed, at explaining in
greater detail the steps needed to solve the problem, and lastly at improving
some aspects of the animation process as it has been described in earlier works.

The aim of the system itself is to provide visually plausible renditions of
animated fluids in three dimensions in a manner that allows it to be usable in
a visual effects production context.

The novel features described include a generalized interaction layer providing
greater control to artists, a new way of dealing with moving objects that interact
with the fluid and a method for adding source and drain capabilities.
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Chapter 1

Overview

Water is familiar to everyone. We know how it moves, how it flows, how it
splashes and how it settles. For computer graphics, modeling the behaviour
of fluids has long been a challenge. Relying heavily on direct simulation of
three-dimensional domains, the computational cost is a big problem which also
manifests itself in the difficulty for artists to operate such a system. The number
of iterations that can be performed during production is limited and thus the
amount of refinement that can go into it.

Recently, new literature has been published describing how to simulate fluids
in three dimensions, most notably Stam [17] and Fedkiw et al ([10], [5] and [4]).
Although they show how to solve the problem, the prerequisite knowledge is
great, and implementing a system based on their papers is still quite difficult.

This thesis starts out by reviewing the mathematics involved. The Navier-
Stokes equations are described and equations for conservation of mass are de-
rived. These are non-linear partial differential equations and are difficult (if
not impossible) to solve analytically, so numerical methods are required. The
finite difference method is described and discrete Poisson equations reviewed,
as well as how to treat the different boundary conditions required in modeling
fluid flow. Methods for tracking and propagating surfaces is discussed in a sec-
tion on level set methods. Given the prerequisite mathematics, an overview of
Stam’s and Fedkiw et al’s contributions show methods of solving fluid dynamics
problems for gas and liquids.

An overview of a solver for liquids is then given, and is described in somewhat
greater detail than in earlier works. An overview of each step required in the
simulation is given, and some novel features are introduced. These include a
generalized method for handling user interaction with the fluid, driven both
kinematically and dynamically. A new way of handling stationary and moving
objects and environments are described, which both increases efficiency and
simplicitly when implementing the system. Also, a method for implementing
regions acting as sources and sinks (areas where fluid is intentionally gained or
lost) is shown. Lastly some results are shown and discussed.
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Chapter 2

Mathematical overview

2.1 Partial differential equations

A partial differential equation (PDE) is one that involves functions and their
partial derivatives. For example, the following is a PDE

∂x

∂t
= 0 (2.1)

since it involves partial derivatives of x.
Such equations can sometimes be solved analytically, but the ones we will

come across need to be solved numerically, in our case using finite difference
methods.

2.2 Fluid mechanics

2.2.1 Equations of motion

The equations of motion for a fluid were derived by Navier and Stokes in the
late eighteen-hundreds. Essentially, they are the extension of Newton’s laws for
momentum, ~F = m~a as it is applied to a fluid element. In condensed form, the
Navier-Stokes equation is as follows

∂~u

∂t
= −(~u · ∇)~u + ν∇2~u− ∇p

ρ
+ ~f (2.2)

where ~u is the velocity, ν is the viscosity coefficient, ρ is the density, p is the
pressure and ~f is the body force.

The different terms can be refered to as the advection term ((~u · ∇)~u), the
diffusion term (ν∇2~u), the pressure term (∇p

ρ ) and the body force term (~f).

2.2.2 Conservation of mass

For an incompressible liquid, eq. 2.2 needs to be coupled to an equation stating
that no mass can be gained or lost.

If ~F is a vector-valued function with continuous partial derivatives on the
region W , then the divergence theorem (Gauss’ theorem) states that for W ,
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bounded by the surface S, with ~n as the outward normal of unit length to S,
the following holds ∫∫

S

~F · ~n dS =
∫∫∫

W

∇ · ~F dV (2.3)

The rate of change of mass in W is

d

dt
m(W, t) =

d

dt

∫
W

ρ(~x, t)dV =
∫

W

∂ρ

∂t
(~x, t)dV (2.4)

The rate of change of mass must be equal to the rate at which mass crosses ∂W ,
i.e.

d

dt

∫
W

ρ dV = −
∫

∂W

ρ~u · ~n dA (2.5)

By the divergence theorem, we may rewrite the RHS of eq. 2.5 from a surface
integral into a volume integral, simplifying the expression into∫

W

(
∂ρ

∂t
+∇ · ρ~u

)
dV = 0 (2.6)

Since this holds for all of W , we have the differential

∂ρ

∂t
+∇ · ρ~u = 0 (2.7)

For an incompressible fluid we have ∂ρ
∂t = 0, which yields

∇ · ~u = 0 (2.8)

2.3 Finite difference method

2.3.1 Discrete gradient

The ∇ operator (nabla, or del) is defined as the vector of the partial derivatives.
On R3, it has the following form

∇ =
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
(2.9)

Given a discrete scalar field Fi,j,k, we can define the gradient ∇F using eq. 2.9
as

∇F =
(

∂F

∂x
,
∂F

∂y
,
∂F

∂z

)
= (Fx, Fy, Fz) (2.10)

Which may be discretized using standard central differencing to form

∇Fi,j,k =
(

Fi+1,j,k − Fi−1,j,k

2h
,
Fi,j+1,k − Fi,j−1,k

2h
,
Fi,j,k+1 − Fi,j,k−1

2h

)
(2.11)
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2.3.2 Discrete divergence

Given a discrete vector field ~Fi,j,k = (u, v, w)i,j,k, the divergence is defined as
the scalar product

∇ · ~F =

(
∂ ~F

∂x
+

∂ ~F

∂y
+

∂ ~F

∂z

)
=
(

~Fx + ~Fy + ~Fz

)
(2.12)

Which can be discretized as

∇ · ~Fi,j,k =
(ui+1,j,k − ui−1,j,k)

2h
+

(vi,j+1,k − vi,j−1,k)
2h

+

(wi,j,k+1 − wi,j,k−1)
2h

2.3.3 Discrete Laplacian

The Laplace operator, ∇ · ∇ or ∇2, is defined as the sum of the second partial
derivatives. It can be thought of as the divergence of the gradient.

∇2 = ∇ · ∇ =
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
·
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
=

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

Thus, for a scalar field F , we have

∇2F =
∂2F

∂x2
+

∂2F

∂y2
+

∂2F

∂z2
= Fxx + Fyy + Fzz (2.13)

The equation can be discretized, forming

∇2Fi,j,k =
Fi+1,j,k − 2Fi,j,k + Fi−1,j,k

(∆x)2
+

Fi,j+1,k − 2Fi,j,k + Fi,j−1,k

(∆y)2
+

Fi,j,k+1 − 2Fi,j,k + Fi,j,k−1

(∆z)2

2.3.4 Discrete Poisson equations

Poisson’s equation has the basic form ∇2a = x. On a scalar field F , it has the
form ∇2F = G. The Poisson equation can also be constructed on a vector field
~F = (u, v, w), such that ∇2 ~F = ~G, in which case each component is treated
separately as (∇2u = ~G1,∇2v = ~G2,∇2w = ~G3). In order to solve the basic
Poisson equation on a discrete grid, we use eq. 2.13 to form one (or three, in the
case of a vector field) linear system A~x = ~b, where A is the matrix of coefficients
from the discrete version of eq. 2.13, ~x is the sought solution and ~b is the RHS
of each equation.
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Boundary voxel Simulation voxel

Figure 2.1: The Dirichlet boundary condition ~u · n̂ = 0 applied to a (2D) vector
field

The discrete Poisson equation is simplified greatly if the grid is uniform, e.g.
∆x = ∆y = ∆z. We call the grid size ∆τ and find the simplification

∇2Fi,j,k =
Fi+1,j,k + Fi−1,j,k + Fi,j+1,k + Fi,j−1,k + Fi,j,k+1 + Fi,j,k−1 − 6Fi,j,k

(∆τ)2
(2.14)

The linear system yielded from this equation is sparse and positive-definite and
can be solved efficiently using the conjugate gradient method. Using Gauss-
elimination or any other technique that does not take advantage of the sparse
nature of the matrix is impossible as the matrix quickly becomes very large. A
voxel space that is 10× 10× 10 will produce a matrix that is 1, 000× 1, 000, but
for a space that is 100 × 100 × 100, the matrix will be 1, 000, 000 × 1, 000, 000
(1003 × 1003).

2.4 Boundary conditions

The equations in section 2.3.4 hold for all voxels in the grid where neighbouring
voxels are also within the solution domain. But once we reach the edge of
the voxel grid, or if we allow internal cells to be excluded from the solution,
boundary conditions are often needed (depending on the problem modeled).

2.4.1 Dirichlet boundary conditions

When solving a problem on a grid of vectors, the Dirichlet boundary conditions
specifies the behaviour of the function along the boundary edge, in our case
that the velocity along the normal of a face shared by a simulation and a non-
simulation cell must be zero. Intuitively, this means that there must be no flow
into a cell that is not regarded as part of the solution domain. Mathematically,
it can be stated as

~u · n̂ = 0 (2.15)
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2.4.2 Neumann boundary conditions

Similar to the Dirichlet boundary condition, the Neumann condition deals with
flow in or out of the solution domain. Whereas the Dirichlet directly enforces
the flow to be zero, the Neumann states that the change of flow along the normal
must also be zero. This may seems superfluous given the Dirichlet condition,
but it has impacts on the forming of systems of equations as is discussed next.
Mathematically, it is defined as

∂~u

∂n̂
= 0 (2.16)

2.4.3 Boundary conditions on discrete Poisson equations

When solving the Poisson equation for a discrete vector field, which is a common
operation in our fluid dynamics system, we must take into account the fact that
some cells are not part of the simulation domain. This is due to the fact that
we have internal obstacles and that the edge of the simulation is treated as a
solid wall. Enforcing a Dirichlet condition is easy, we may simply alter each cell
to satisfy it. The Neumann condition is slightly more difficult, as it must be
incorporated into the Poisson equation itself.

If we look at just the x-dimension of the equation, we have the following

∇2Fi,j,k =
Fi+1,j,k + Fi−1,j,k − 2Fi,j,k

(∆τ)2
(2.17)

If we now regard Fi+1,j,k as out of the simulation domain, we want to enforce a
Neumann boundary condition on it. Stating that the normal derivative (or the
derivative along the normal) is zero implies

Fi+1,j,k − Fi,j,k = 0 (2.18)

Plugging this into eq. 2.17 yields

∇2Fi,j,k =
Fi+1,j,k + Fi−1,j,k − 2Fi,j,k

(∆τ)2
=

Fi−1,j,k − Fi,j,k

(∆τ)2
(2.19)

The effect this has on the linear system is that we must remove the row and
column corresponding to cell Fi+1,j,k and change the coefficient at the central
cell (Fi,j,k) to reflect this change.

Why don’t we just rely on the Dirichlet condition? Since it is enforced
explicitly after the solution of the Poisson equation, it is a local operation.
Using the Neumann condition as we solve the Poisson will make sure that the
change in one cell will affect the other cells correctly. If we limit the flow in one
cell, the neighbours of it will have to be altered, and so on. The Dirichlet is still
needed to provide the correct initial value, as the Neumann only controls the
change of flow.

2.5 Level sets

Level sets were developed by J. A. Sethian and S. Osher as a way of tracking
propagating interfaces. They are based on a shift in philosophy regarding in-
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a

b

insideoutside

Γ

Figure 2.2: Characteristics of a level set. The interface Γ is the zero level set
(φ = 0). Furthermore, we have φ(b) = 0 as it is on the surface, and given that
b is the closest point on Γ from a we have φ(a) = |a− b|. This implies that the
vector a− b is orthogonal to Γ.

terfaces, in that they replace the Lagrangian, geometrical methodology in favor
for a Eularian, based on partial differential equations.

Level sets are intuitively similar to iso-surfaces. Given a scalar-valued func-
tion φ, a level set α is the set of points ~p for which φ(~p) = α. Thus, a level set
can define a surface Γ implicitly through a scalar distance function φ. At any
point ~p in space, φ(~p) is the distance to the closest point on the surface Γ.

Implicit surfaces can be used to describe topologically complex surfaces that
are hard to parameterize. While parametric surfaces require a basis function
which will limit the number of geometries that can be modeled, a level set can
describe any given geometry in continuous space, and is only limited by resolu-
tion in discrete space. Furthermore, level sets allow for arbitrary deformations
and propagations of Γ.

2.5.1 Mathematical properties

The surface Γ is described by the zero level set such that

Γ(t) = {~x|φ(~x, t) = 0}

where φ is a smooth signed distance function.
Γ(t) describes one or many closed surfaces which bound the region Ω. Thus

φ has the following properties:

φ(~x, t) < 0 for ~x ∈ Ω
φ(~x, t) > 0 for ~x 3 Ω
φ(~x, t) = 0 for ~x ∈ ∂Ω

The outward unit normal ~N of Γ(t) is defined as

~N =
∇φ

|∇φ|
(2.20)

The mean curvature κ is given by

κ = ∇ ·
(
∇φ

|∇φ|

)
(2.21)
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2.5.2 Propagation of the surface

A level set is propagated by the velocity field ~u according to the partial differ-
ential equation

∂φ

∂t
= −~u · ∇φ (2.22)

Since this equation is impossible to solve analytically, it must be discretized.
Although simple low-order discretizations could be used, level sets require highly
accurate computations to be useful. Thus an upwinded Hamilton-Jacobi ENO
(essentially non-oscillatory) or WENO (weighted essentially non-oscillatory), or
a TVD (total variation diminishing) Runge-Kutta method is usually employed.
[15] provides good details for implementing either of these solvers.

2.5.3 Reinitialization

As numerical errors are introduced during repeated movement of the surface,
the value of φ may no longer be an accurate measure of the distance to the
closest surface. When this occurs, the level set needs to be reinitialized. During
this, each grid point away from the zero level set is recomputed so that φ is once
again accurate.

Reinitialization is most efficiently performed using the fast marching method.
Details can be found in a range of different publications, for example [16].

2.6 Particle level sets

Despite level sets’ ability to capture and treat rarefaction and shock (in the case
of water, splashes separating themselves from a body of water and the joining
of said splash when it comes back onto the surface), some detail may still be
lost in this process. In [10], Foster and Fedkiw discuss an improvement to the
level set method called the particle level set method (PLS method). Whereas
the old method relies solely on the old value of φ and a velocity field in order
to compute a new surface location, the PLS method places marker particles
along the zero level set (the surface). By advecting these particles along with
the surface, any errors in the level set method become evident as the particles
will no longer be located along the φ = 0 interface. In these cases, the values of
grid points neighbouring on the particle are corrected by measuring the distance
from the particle to the point. Intuitively, if a particle said to be located on the
surface is advected and ends up away from the surface, then that surface was
not advected properly. Further details are found in [15].
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Chapter 3

Related Work

This section describes related work that this thesis builds upon. In the areas
of fluid mechanics and computational fluid dynamics, thousands of papers and
books have been published. Here, we will only be concerned with those having
a direct relation to fluid dynamics in a computer graphics context. Focus will
be mainly on visual results as opposed to strict physical accuracy.

The number of publications dealing with fluid dynamics for computer graph-
ics is very limited, with pioneering work taking place only in the last five years.
In 1995 Foster and Metaxas [11] published one of the first papers on how to
create a system for animating fluids. Stam [17] showed how to solve the Navier-
Stokes equation in an unconditionally stable manner. Fedkiw and Foster [10]
and Enright, Marschner and Fedkiw [5] built upon both these papers and intro-
duced level sets as a method of tracking a free surface in the simulation.

These next sections describe the work in [17], [10] and [5]. Although [11] is
also important, this thesis is not based directly upon it and a detailed review is
therefor omitted.

3.1 Stable fluids

In 1999, Stam showed how to solve the Navier-Stokes equations using a semi-
lagrangian scheme that guaranteed stable solutions, regardless of the size of the
time step [17]. By using the method of characteristics, the advection term of
eq. 2.2 is solved in a stable manner. Stam also shows how to solve the mass-
conservation step using an implicit scheme, as opposed to the explicit one used
by Foster and Metaxas in [11].

The following sections outline how Stam’s solver works. It should be noted
that he only treats one-phase fluids, the fluid occupies the entire simulation
domain and no internal object boundaries exist.

3.1.1 Solver overview

To compute the liquid motion, the simulation domain is discretized to form a
velocity field ~u. Given an initial state ~ut = ~u(~x, t), the solution ~ut+∆t is solved
in four steps. We let ~w0 = ~ut. The Navier-Stokes equation (eq. 2.2) is then
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solved term-by-term as

~w0(~x) → ~w1(~x) force
~w1(~x) → ~w2(~x) advect
~w2(~x) → ~w3(~x) diffuse
~w3(~x) → ~w4(~x) project

Force term

The force term is trivial to solve. We merely integrate the force ~F over the time
step ∆t.

~w1(~x) = ~w0(~x) + ∆t ~F (~x, t) (3.1)

Advection term

The advection term is basically the ‘transport of velocity’. A disturbance in
the velocity field ~u propagates according to (~u · ∇)~u. This is a non-linear term
which may be solved in different manners. A finite difference discretization of
the ∇ operator can be used, but it imposes limitations on the size of the time
steps which can be taken.

Stam proposes an semi-lagrangian technique which had been used in meteo-
rological simulations, but never before in computer graphics. It is based on the
method of characteristics, a technique that is used to solve partial differential
equations (see section 2.1). When applied to the advective derivative (~u · ∇)~u,
the method may be understood as tracing a particle backwards in the velocity
field ~u over the time step ∆t, and finding the velocity vector at that point. We
define the tracing function ~p(~x, dt) as the position that a particle currently at ~x
had at time t + dt. In this way, we can solve the advection term as

~w2(~x) = ~w1(~p(~x,−∆t)) (3.2)

This method has the advantages of being easy to implement (only a particle
tracer and a vector field interpolator is needed), as well as being unconditionally
stable.

Diffusion term

The diffusion of the fluid is due to viscosity. A grid cell will be pulled along
with the velocities of its neighbours, with the kinematic viscosity constant ν
determining the scale of the effect.

This diffusion has the form of a standard diffusion equation.

∂ ~w2

∂t
= ν∇2 ~w2 (3.3)

In [11], Foster and Metaxas used a finite difference scheme and explicitly solve
this equation for every grid cell. While this is easy to implement, it has problems
with stability as the viscosity becomes large. Instead, Stam solves the term
implicitly by forming

~w3 − ~w2

∆t
= ν∇2 ~w3 (3.4)
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~w3 − ν∆t∇2 ~w3 = ~w2 (3.5)(
I− ν∆t∇2

)
~w3 = ~w2 (3.6)

After discretizing the ∇2 operator, this equation leads to a sparse linear system
which can be solved very efficiently using the conjugate gradient method. The
underlying mathematics are described in section 2.3.4.

Pressure term

In order to solve the pressure term, Stam uses a projection method. The
Helmholtz-Hodge theorem states that any vector field ~w may be decomposed
into a divergence-free field and a gradient (conservative) field.

~w = ~u +∇q where ∇ · ~u = 0 (3.7)

We define the projection function ~P as the operator that projects a field onto
its divergence-free part, thus

~u = ~P (~w) = ~w −∇q (3.8)

This may be applied to the basic Navier-Stokes equation (2.2) to yield

∂~u

∂t
= ~P (−(~u · ∇)~u + ν∇2~u + ~f) (3.9)

We note that ~P (~u) = ~u since we are assuming that fields be divergence-free,
and that ~P (∇p) = 0 since ∇p is a conservative field.

In order to make the field ~w3 divergence free, we need to find the scalar field
q of eq. 3.8. By multiplying both sides of the equation by ∇ we have

∇ · ~w3 = ∇2q (3.10)

After discretizing the ∇2 operator, a sparse linear system similar to that of
the diffusion step is found and can be solved in the same manner. To find the
resulting field ~w4, we simply take

~w4 = ~w3 −∇q (3.11)

and compute the resulting field using a finite difference discretization of the
gradient operator.

Section 2.4.3 discusses how to solve this linear system and how to treat cells
lying at the edge of the voxel grid.

3.2 Fluids on irregular domains

While Stam showed how to solve the Navier-Stokes equations for a gas, in [10],
[5] and [4] Fedkiw et al showed how to compute solutions for fluids with surfaces
and how to accurately track the surface between air and liquid. The papers
built upon the earlier work by Stam and Foster/Metaxas for simulating the
fluid motion, and on work by Sethian and Osher for surface-capturing. The
most important differences are described below.
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Figure 3.1: MAC grid conventions.

3.2.1 Velocity field

Where Stam used a regular grid, i. e. all pressures, densities and velocities
are defined at the center of each voxel, the velocities are instead defined at the
center of each face of a voxel. This is called a ‘staggered’ or MAC grid. Figure
3.1 illustrates the principle.

3.2.2 Surface representation

Although water simulations are similar to gas simulations, some additional steps
must be taken. The surface must be tracked, and the domain must be altered
as the surface captures a different region in each time step. In [10], the method
of using level sets to track the fluid surface is introduced. Level sets fulfill both
the need for a robust treatment of moving fronts as well as a way of determining
which voxels are part of the solution domain.

But since level sets have a tendency of gaining and/or losing mass after
repeated propagation, an improvement on level sets called particle level sets
(see section 2.6) is introduced. By placing large numbers of marker particles
along the surface and advecting these using the same velocity field as for the
level set, any numerical errors can be corrected by examining the value of a
distance function at each grid point.

In [10], marker particles are placed on the inside of the surface, which pre-
vents the level set from falling back on itself, but still allows the level set to gain
mass. This method is refined in [5] by placing marker particles on both sides of
the surface. This makes the solution symmetric, but requires careful treatment
where particles on the outside of the surface move to the inside while at the
same time particles on the inside move to the outside.

3.2.3 Boundary

All stationary objects are converted to a voxel representation where each voxel
is regarded either as in or out of the boundary. Moving objects are kept as
polygons, which requires a search through all polygons in order to determine if
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a voxel is within a moving boundary. Also, this limits the number of polygons
that may lie within a single voxel to just one.

3.2.4 Updating the velocity field

The force and advection term of the Navier-Stokes equation is solved exactly as
described in Stam’s solver above. Since only water-like fluids are regarded, the
viscosity term is solved explicitly using finite differences. This is acceptable, as
instabilities only occur for large viscosities. Last, the velocity field is made to
conserve mass (e. g. be divergence free) along the same lines as Stam, but since
a staggered grid is used the result is more accurate.

In all above steps, care must be taken to only apply forces and enforce mass-
conservation on those voxels that are actually inside the fluid. The sign of φ of
the surface level set provides a simple method of checking this.
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Chapter 4

System overview

This section describes the methods and techniques used in the system. The
problem we are solving is the motion of an interface Γ under the influence of a
velocity field ~U on a domain D.

4.1 Novel Features

While the papers reviewed in section 3 are the foundation of the system de-
scribed here, we will also introduce some new features.

4.1.1 Generalized representation of user forces and veloc-
ities

Previous papers have discussed ways of letting the user influence the motion of
the water, but none of them propose a general method of integrating interaction
elements into the solver.

In [10], Foster and Fedkiw propose using sets of 3D splines to control the
motion of the fluid and describe a method of setting the values in the simulation
velocity field to accomodate the inputs. In our system, interaction elements can
be of any kind imaginable, as long as it can be ’rendered’ into a 3D vector field.
Thus for 3D splines, we would set the values of voxels neighbouring the spline
along the lines of the method in [10].

By creating a layer of abstraction to the interaction inputs we can allow the
user to write custom interaction elements, as long as they can be represented
as a vector field.

4.1.2 Sources and drains

Sources and drains are places in the simulation where water is intentionally
gained or lost. A source is a group of voxels that are always populated by
water, a drain one that is always populated by air. Both are effective methods
of giving the user greater control as well as reducing simulation time. Instead of
using a large tank of water with a hole for the water to exit through in order to
inject water into the a simulation, we can choose to model only the hole where
water is exiting. Correspondingly, instead of having water exit through a hole
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in the floor and having to simulate the container it spills into, we can choose to
model only the drain hole.

4.1.3 Level set representation of obstacles

In [10], Foster and Fedkiw describe a method of dealing both with stationary
and moving obstacles. Stationary ones use a voxel representation and moving
ones are made up of polygons. While it is fine to represent stationary obstacles
as voxels, the polygon approach to moving obstacles require that a search be
executed every time one wants to find the polygon intersecting a given voxel.
Inside/outside tests may also be difficult.

By creating a level set for the static obstacles and a level set per frame for
moving obstacles, we can use CSG (Constructive Solid Geometry) operators to
merge the two. If we associate a velocity field with the obstacles, we can easily
decide whether or not a voxel is stationary or moving and treat it accordingly.

Having a volume representation of the moving obstacles allows for constant-
time queries of whether a given voxel is inside or outside a moving obstacle, and
what its velocity is.

4.2 Data structures

A number of data structures are required for the solver to work. Here we will
describe the functionality each one must offer as well as some details of their
implementations.

4.2.1 3d fields

In order to store data in a volume, a 3d field is used. The field is discrete,
with regularly spaced sample points (i. e. a regular grid). In order to access
an element, we have Fi,j,k = value, where i ∈ [0, width), j ∈ [0, height),
k ∈ [0, depth). The bounding box for the field is defined by the points at F0,0,0

and Fwidth−1,height−1,depth−1.
The values stored in a 3d field must all be of the same datatype, but different

fields may have different datatypes. The C++ template construct is used to ac-
commodate this. Some classes that inherit from the 3d field template introduce
new method calls that apply only to that class. They are described below.

Scalar fields

Scalar fields allow the storage of any scalar data, such as integers and floating
point values. They are used in the simulator for storing density values (float-
ing point) as well as for book keeping (integers). Appropriate mathematical
functions are available, such as the gradient operator (∇).

Vector fields

Vector fields are mainly used to store velocity data, and uses any 3d vector as
its datatype. The divergence operator (∇ ·) is available.
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Water cell

Air cell

Figure 4.1: Classifying water cells versus air cells

Level sets

A level set is a sub-class of scalar field, since the data stored is principally
equivalent. The methods available are different however, and include reinitial-
izing (see section 2.5.3) and moving the level set (see section 2.5.2) as well as
performing CSG operators.

Particle level sets

Particle level sets subclass level sets but add storage of particles. Since particles
will be created and deleted continuously, but no random access is required, a
double-linked list is used.

4.3 Variables

The following variables need to be kept

Surface The surface is represented using a particle level set. All voxels that
have φ ≤ 0.5∆τ (computed at the center of the voxel) are regarded as
being in water and thus in the solution domain. Figure 4.1 shows the
principle.

Velocity field The velocity field is a vector field which will keep track of the
flow throughout the simulation space.

Boundaries The boundaries define where water cannot enter. It is represented
using a normal level set, since we will never be using level set operations
to move it. Instead, if it is animated, a sequence of pre-calculated level
sets are read in. Voxels with a φ ≤ 0 are regarded as inside an obstacle –
see figure 4.2

Boundary velocity field In order to allow for the boundary to be animated,
we keep a separate velocity field with values for each boundary voxel.
Stationary objects are treated no different from moving ones, so there is
no need to use a separate field for specifying which voxels move.

18



surface

Boundary cell

Air cell

Figure 4.2: Classifying boundary cells versus air cells

Compute internal timestep
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Move surface

New timestep

Figure 4.3: Overview of the simulation

4.4 Computing the solution

This section describes the steps taken to solve the equations of fluid motion for
a single time step. Figure 4.3 shows an outline of each time step.

4.4.1 Time step

The time step of the simulation is controlled by the user, most often set to 1
24

seconds, which is the frame rate of film. However, this time step may be large
enough to make the simulator inaccurate. In order to allow the user to specify
an arbitrarily large time step while still being in control of the simulation, the
time step is subdivided into smaller ones internally.

The CFL condition specifies that the time step must be chosen so that the
maximum velocity on the simulation domain will move a massless particle at
most one voxel. While our simulator is stable for arbitrarily large time steps, its
accuracy will be reduced as the velocities grow bigger. The user may therefor
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alter a variable called CFLmultiplier to control the CFL condition. From this
multiplier, the number of necessary subdivisions needed can be computed as

subdivisions = C
~umax · dt

∆τ

Where ~umax is the maximum velocity in the velocity field ~u, dt is the user-
specified time step, C is the scaling factor (CFLmultiplier) for controlling the
fidelity of the simulation (lower is less accurate), and ∆τ is the size of one voxel.

4.4.2 Book keeping

Throughout the following steps we will need to access parts of the velocity field
based on their state (in water, in air, in obstacle, in source etc.). Also, we need
to be able to quickly traverse any set of voxels.

Voxel state

By traversing the entire level set field once we build a buffer of the state for
each voxel. This is represented with flags for each state, since a voxel may both
be in water and in a source, both in air and in a drain. The available states are:

• Air, the voxel being completely filled with air.

• Water, the voxel being completely or partially filled with water.

• Obstacle, the voxel being at least half filled with an obstacle.

• Source, the voxel being completely within a source.

• Drain, the voxel being completely within a drain.

Traversal lists

In order to quickly traverse all voxels of a given state (e. g. all water voxels)
the coordinates for each voxel is added to a list during the creation of the voxel
state (see above). This ensures that we only visit those voxels that are relevant
during each step.

4.4.3 Sources and drains

In order to efficiently be able to inject and remove fluid from the simulation,
sources and drains are available. Sources as well as drains are represented by
ordinary level sets. For the source Sc and the simulation domain D such that
Sc ∈ D, we have

φ(~x, t) < 0 (4.1)

for all ~x ∈ Sc and all t. For a drain Dr ∈ D we have

φ(~x, t) > 0 (4.2)

for all ~x ∈ Dr and all t.
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Figure 4.4: A source at the left injects fluid into the simulation domain

A velocity field ~V (which may be animated) is used to provide initial veloci-
ties at each frame. For all voxels within a source or drain, we first set the value
of φ so that eq. 4.1 and 4.2 are satisfied. This is achieved by performing a CSG
union operator on sources and a CSG difference operator on drains.

Then, for any voxel within a source or drain, we set the velocity to be that
of the supplied source/drain velocity. Thus for the simulation velocity field ~U ,
we have

~U(~x) = ~V (~x) (4.3)

for all ~x ∈ Sc. Figure 4.4.3 shows an active source.

4.4.4 Forces

Forces are used to drive the simulation dynamically (as opposed to kinematically,
see section 4.4.5). In order to add the force term to the simulation velocity field
~U we compute the following for each cell

~U(~x, t + ∆t) = ~U(~x, t) + ~F (~x, t)∆t (4.4)

where ~F is the force field composed of gravity plus any user-specified forces.

4.4.5 Velocity modifications

Velocity modifications are used to drive the simulation kinematically. The user
specifies the velocity at each point in the field as well as a blend factor field.
The blend factor is used to facilitate ease-in/ease-out, where the velocities are
modified gradually over time.

Using a blend factor to control velocities may seem similar to using a force,
but there is a difference in that a velocity modifier will never reach a value
higher than that specified in the velocity field.

Computing the modified velocity of the simulation velocity field is done at
each cell through

~U(~x, t) = (1− α(~x, t))~U(~x, t) + α(~x, t)~V (~x, t) (4.5)

where ~U is the original velocity field, ~V is the velocity modification field and
α is the blend factor at the given cell. Figure 4.5 shows the effect of the blend
factor.
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Figure 4.5: The effect of α when modifying velocities
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Figure 4.6: A particle at time t is backtraced through a velocity field. The
result is interpolated from the four neighboring vectors closest to the point at
time t−∆t

4.4.6 Advection

The advective term of eq. 2.2 is solved exactly along the lines of Stam (see [17]
and section 3.1).

For every cell in the simulation, we are trying to find the advective deriva-
tive of the velocity field ~Ui,j,k. By using a particle tracer, we march backwards
in time ∆t time units along the flow. The new value for ~Ui,j,k is the velocity
found at the location of the back-traced particle. The particle-tracing is imple-
mented as an Euler- or Runge Kutta-type differential equation solver in three
dimensions. Figure 4.6 shows an Euler particle tracer.

4.4.7 Diffusion

The diffusion term is solved along the lines of Stam [17]. The linear system is
constructed as described in 2.3.4 and is solved using a pre-conditioned conjugate
method solver. If the viscosity is small (as it is when modelling water), no
boundary conditions are needed except for setting the velocity equal to zero for
any voxels inside obstacles or outside the solution domain. For high-viscosity
liquids and liquids where the viscosity varies on the simulation domain, special
methods are required. Henrik Fält describes a system for dealing with these
cases in [7].

Once the linear system is solved, the vector b contains the new velocity for
each voxel.
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4.4.8 Conserving mass

In order to keep the the velocity field mass-conserving (i.e. divergence free), we
need to compute the pressure for each cell such that when removing the pressure
term from eq. 2.2, a divergence free field is obtained. The method for doing this
is described well in [10] and the underlying mathematics in sections 2.3.4 and
2.4.3. In essence, a linear system is constructed where each row is the following
equation ∑

n=i,j,k

(pn+1 + pn−1)− 6p = 2ρ
∆τ

∆t

∑
n=i,j,k

(un+1 − un−1) (4.6)

The sigma notation is simply a shorthand for doing differencing in three dimen-
sions. The LHS contains only the unknown variable p and this is where the
boundary conditions are applied. In constructing the A matrix (the coefficients
of the p terms each have a corresponding column in the A matrix) for the Pois-
son equation two types of boundary conditions are required. The first is the
liquid-obstacle boundary, which is described in section 2.4.3. These cases do
not affect the RHS of the equation, since the pressure of the an obstacle cell is
zero and this only cancels a term on the LHS.

The second boundary condition is the liquid-surface boundary. Thanks to
the ghost fluid method (see [8]), this boundary condition is modelled by explicitly
setting the known pressure values for those cells. Thus, any neighbour cell that
is defined as being in air is removed from the A matrix and the atmospherical
pressure is subtracted from the RHS of 4.6.

In effect, all voxels that do not require a special boundary condition will have
the center coefficient of the A matrix equal to −6 and six other coefficients in
the row equal to 1. All voxels that have boundary conditions will have a center
coeffient equal to minus the number of neighbour cells defined as ‘in liquid’,
and the corresponding columns having a coefficient of 1. Any cells being inside
obstacles or air are removed altogether by deleting the corresponding row and
column of the A matrix.

When computing the divergence present in each cell (the second sum of
eq. 4.6) in order to produce the RHS for the Poisson equation, it is important
to take into account any moving objects. A neighbour voxel that is inside a
boundary should not be treated simply as having zero velocity, instead it is
necessary to look up its true velocity in the boundary velocity field (see section
4.3).

Once the linear system is solved the new velocity for each cell is computed
from

~U t+∆t
i,j,k = ~U t

i,j,k −
∆t

2ρ∆τ
((pi+1 − pi−1), (pj+1 − pj−1), (pk+1 − pk−1)) (4.7)

which is essentially the equation u = w −∇p (see 3.1.1).

4.4.9 Moving the surface

Since our surface is represented by a particle level set, there are two steps that
need to be performed. First, as described in section 2.5.2, the surface Γ is moved
by solving the following equation for all grid points
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∂φ

∂t
= −~U · ∇φ (4.8)

After this step, each particle in the particle level set is moved using Euler or
Runge Kutta integration along the flow lines of the velocity field. The particles
are then used to correct the value of φ along the surface (see section 2.6).

4.5 Output

The output of the simulator is two three-dimensional fields: the level set surface
Γ and the velocity field ~U . The animation is a frame-by-frame sequence of these
fields.

Although only the level set surface is needed in order to render the animation,
the velocity field offers allows easy motion-blurring since it contains the velocity
at each point on the surface. Also, it can provide particles with initial velocities,
for example when accentuating splashes.
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Chapter 5

Results

5.1 Example 1

The example in figure 5.1 shows a round ball having been plunged into a pool
of water. The first and subsequent frames show the effect on the water after the
ball has come to rest. It displays the following components in action

Moving objects The moving ball is decribed by one level set for each anima-
tion frame. The level set need only capture the region the ball is actually
occupying, not the entire simulation space. If more objects were involved
in the animation, separate level set files would be created. The boundary
velocity field is calculated at the center of each voxel and the vector field
is recorded for each frame. All these computations are separate from the
simulation engine.

Surface tracking After impact, a thin sheet of water develops. If ordinary
level sets where to be used, the sheet would most likely disappear from
numerical errors in the level set propagation equation. However, the par-
ticle level set used accurately maintains a coherent surface.

The simulation time for the 140×91×111 domain was approximately 10 minutes
per frame.

5.2 Example 2

In figure 5.2 a 20 × 10 × 20 voxel region at the left end of the experiment is
defined as a source. The simulation is 10 m long and the fluid is injected at 3
m/s. The images show the fluid hitting a wall and accurately exhibiting a wave
crashing back on itself. Several secondary waves are visible in the third and
fourth frames.

This behaviour is entirely caused by the Navier-Stokes equations with bound-
ary conditions, no special cases are regarded in order to treat falling droplets,
waves building, water splashing or the rising of the water surface.

The simulation time for the 200 × 80 × 31 domain was approximately 2
minutes per frame.
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Figure 5.1: A sphere is moved rapidly into a pool of water. The thin splash is
only possible to capture using a particle level set – ordinary level sets would fail
to keep track of the fine detail.
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Figure 5.2: A source at the left edge of the experiment injects water at a high
speed. After it reflects off of the opposing wall, the appropriate crashing wave
is formed.
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5.3 Example 3

The images in figure 5.3 show a moving obstacle which contains a pool of water
(the example in 5.1 is a solid ball which is only driving the water in front of it).
As the container is rotated, the water pours out of it and into the larger pool
of water underneath. We note that throughout the rotation no water leaks into
the container. This movement is modelled by the user in exactly the same way
as in 5.1 but can be used to model completely different behaviours.

5.4 Example 4

The two images in figure 5.4 are meant to illustrate the behaviour of the simula-
tor as the resolution changes. Since units are treated correctly throughout, the
resolution may be altered without changing the rate at which waves propagate,
the speed at which a source ejects liquid, etc. However, as the images show, a
high resolution is necessary not necessarily to capture the correct motion of the
water, but to provide the fine detail needed to convince a viewer that what is
seen is really similar to water.
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Figure 5.3: A moving container filled with liquid is emptied into a still pool of
water.
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Figure 5.4: Two similar experiments showing a higher resolution (top, 80×77×
113) and lower resolution (bottom, 40 × 36 × 56). Although both accurately
describe the motion of the water, the low resolution version lacks the finer
detail necessary to produce convincing surfaces
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Chapter 6

Future work

Future work can be divided into two sections: that dealing with computing the
motion of the water, and that dealing with tracking the surface of the water.

In dealing with the motion, the voxel-based finite difference method (FDM)
could be substituted for a more general finite element method (FEM). This
would have huge benefits in the quality and speed of the simulation engine, but
is much more difficult to implement. Also, extending the physical properties
modelled to include friction and other phenomena is an interesting topic.

In the second, an extension to the particle level set would be interesting.
The method is quite expensive computation-wise, since upwards of 64 parti-
cles are placed in each voxel close to the surface. Approximating the surface
through each voxel parametically using planes or curved surfaces instead of par-
ticles might help, but requires research as the particle primitive is an essential
assumption to the particle level set method.

And finally, involving both surface tracking and liquid motion, improvements
could be made in the treatment of static and moving obstacles. Although a level
set is used to describe these, each voxel is still treated as completely inside or
completely outside of the obstacle. A method using the exact value of φ would
help keep the liquid flowing perfectly flush along boundaries. Also, the normal
of obstacles is currently treated as axis-aligned. Changing this would require
specifying new boundary conditions (the ones described in section 2.4.3 all as-
sume axis-aligned normals), but would certainly help in the case of obstacles
whose surfaces are at angles close to 45 degrees of the grid.
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